<rt id="sku2a"><center id="sku2a"></center></rt>
<acronym id="sku2a"><center id="sku2a"></center></acronym>

數學系Seminar第2066期 Nonlinear optimization techniques in wireless communications

創建時間:  2020/12/16  龔惠英   瀏覽次數:   返回

    數學系 Seminar 第2066期

報告主題:Nonlinear optimization techniques in wireless communications

報 告 人:孫聰 副教授 (北京郵電大學)

報告時間:2020年12月17日(周四) 13:00

會議地點:F309

邀 請 人:余長君

主辦部門:理學院數學系

報告摘要: In this talk, several commonly used nonlinear optimization techniques in wireless communications are reviewed. Optimization problems in wireless communications are usually nonconvex and highly nonlinear, where classic optimization methods may not be applied directly. Special structures of the optimization problems and the wireless communication background information should be considered and thus different optimization techniques are used accordingly. Starting from optimality conditions, we will talk about KKT equations, dual formulation, alternating direction search, and especially approximation techniques including Taylor expansion approximation, convex approximation and majorization/minorization. Examples will be presented to show the combinations of continuous and combinatorial techniques.


歡迎教師、學生參加!

上一條:數學系Seminar第2067期 隨機橢圓型偏微分方程最優控制問題無網格方法的先驗誤差估計

下一條:數學系Seminar第2065期 Smoothing fast iterative hard thresholding algorithm for L0 regularized nonsmooth convex regression problem


數學系Seminar第2066期 Nonlinear optimization techniques in wireless communications

創建時間:  2020/12/16  龔惠英   瀏覽次數:   返回

    數學系 Seminar 第2066期

報告主題:Nonlinear optimization techniques in wireless communications

報 告 人:孫聰 副教授 (北京郵電大學)

報告時間:2020年12月17日(周四) 13:00

會議地點:F309

邀 請 人:余長君

主辦部門:理學院數學系

報告摘要: In this talk, several commonly used nonlinear optimization techniques in wireless communications are reviewed. Optimization problems in wireless communications are usually nonconvex and highly nonlinear, where classic optimization methods may not be applied directly. Special structures of the optimization problems and the wireless communication background information should be considered and thus different optimization techniques are used accordingly. Starting from optimality conditions, we will talk about KKT equations, dual formulation, alternating direction search, and especially approximation techniques including Taylor expansion approximation, convex approximation and majorization/minorization. Examples will be presented to show the combinations of continuous and combinatorial techniques.


歡迎教師、學生參加!

上一條:數學系Seminar第2067期 隨機橢圓型偏微分方程最優控制問題無網格方法的先驗誤差估計

下一條:數學系Seminar第2065期 Smoothing fast iterative hard thresholding algorithm for L0 regularized nonsmooth convex regression problem

秒速时时彩